Overview of the CERES Edition 4 Multilayer Cloud Properties

Fu-Lung Chang¹

Patrick Minnis², Sunny Sun-Mack¹, Seiji Kato², Yen Chen¹

1. SSAI, Hampton, VA

2. NASA LaRC, Hampton, VA

Joint CERES/GERB/ScaRaB Earth Radiation Budget Workshop 22-25 October, 2012, GFDL, Princeton, New Jersey

Outline

- Methodology Development of the new CERES Edition 4 multilayer cloud properties.
 Constraint by the infrared and visible measurements.
 Relationship to the CERES single-layered optical and microphysical properties.
- Results –
 What to expect in the CERES Ed4 multilayer cloud properties?
 What to expect in their retrieval limitations?
- Aspects of the passive and active satellite remote sensing Inferences from the merged C3M (CALIPSO/CloudSat/CERES MODIS) data.

CERES Edition 4 Multilayer Cloud Parameters

Percent coverage and layer mean cloud properties:

- i. Coverage of single-layer upper clouds with Pc < 500mb
- ii. Coverage of single-layer lower clouds with Pc > 500mb
- iii. Coverage of multilayer clouds with upper-layer Pc < 500mb and lower-layer Pc > 500mb

CERES Two-Layered Cloud Retrieval Systems

- Constraints and relationships:
- Upper-layer and lower-layer $B(T_c)$ and ε_c constrained by the infrared radiance measurement.
- Upper-layer and lower-layer τ_c constrained by both the visible reflectance measurement and CERES single-layered optical depth.
- Upper-layer ice $R_{e3.7}/R_{e2.1}$ and lower-layer water $r_{e3.7}/r_{e2.1}$ employed initial guesses from good CERES single-layered retrievals within the processing domain.

Upper layer cloud: P_c , T_c , z_c , ε_c , τ_c , $R_{e-3.7}$, $R_{e-2.1}$ (ice phase)

Lower layer cloud: P_c , T_c , z_c , ε_c , τ_c , $r_{e-3.7}$, $r_{e-2.1}$ (water phase)

Why Retrieving Two-Layered Clouds?

- Improvement in satellite retrieved upper cloud top altitude is not sufficient.
- Need to account for overlapped lower layer cloud.

CERES Ed4 Multilayer Cloud Fractions

CERES Ed4 Upper & Lower-Layer Cloud Top Pressures

CERES Ed4 Upper & Lower-Layer Cloud Top Pressures

CERES Ed4 Upper & Lower-Layer Cloud Top Temperatures

CERES Ed4 Upper & Lower-Layer Cloud Top Heights

CERES Ed4 Upper & Lower-Layer Cloud Top Heights

CERES Ed4 Upper & Lower-Layer Cloud Optical Depths

CERES Ed4 Upper & Lower-Layer Cloud Optical Depths

CERES Ed4 Upper (ice) & Lower (water) 3.7-µm Effective Radii

CERES Ed4 Upper (ice) & Lower (water) 3.7-µm Effective Radii

CERES Ed4 Upper (ice) & Lower (water) 2.1-µm Effective Radii

- A coding error was found in the 2.1-µm upper Re/lower re retrievals over the snow/ice land surface.
- The cause: Initial guessed value was erroneously set to zero.

Aspects of Passive & Active Satellite Remote Sensing

Why & What were the differences among the ground- and satellite-based active sensing?

Active Remote Sensing: CALIPSO and CloudSat (case 1)

Active Remote Sensing: CALIPSO and CloudSat (case 2)

Active Remote Sensing: CALIPSO and CloudSat (case 3)

CALIPSO and CloudSat Detected Cloud Fractions: 2007 March-May

CALIPSO/CloudSat/CERES (Ed2) Merged and CERES Ed4 Multilayer Cloud Fractions: 2007 March-May

CALIPSO/CloudSat & CERES (Ed2) Merged Pc/Tau Histogram In Three Categories: 2007 March-May

CERES Ed4 Multilayer Pc/Tau and Pc/ε_c Histograms (2007 March-May)

Conclusions

- The first look at the CERES Edition 4 multilayer cloud properties showed reasonable agreement with the C3M data.
- The upper- and lower-layer cloud parameters when retrieved are expected to better characterize not only the cloud vertical locations, but also the radiative effects in the infrared/longwave and visible/shortwave due to ice over water clouds.
- However, the CERES Edition 4 multilayer cloud retrievals are limited to 1) the upper-layer cirrus cloud with a visible Tau > 0.25 and an infrared emissivity ε < 0.75 and 2) the underlying lower-layer water cloud with a visible Tau > 1.
- The first survey showed CERES Ed4 multilayer cloud fractions ~10% globally. This evaluation of the CERES Ed4 multilayer cloud parameters is not final and still on going!
- Future work, we will use the new C3M data produced with the CERES Ed4 Clouds.